98 research outputs found

    An overview of Stackelberg pricing in networks

    Get PDF
    The Stackelberg pricing problem has two levels of decision making: tariff setting by an operator, and then selection of the cheapest alternative by customers. In the network version, an operator determines tariffs on a subset of the arcs that he owns. Customers, who wish to connect two vertices with a path of a certain capacity, select the cheapest path. The revenue for the operator is determined by the tariff and the amount of usage of his arcs. The most natural model for the problem is a (bilinear) bilevel program, where the upper level problem is the pricing problem of the operator, and the lower level problem is a shortest path problem for each of the customers. This paper contains a compilation of theoretical and algorithmic results on the network Stackelberg pricing problem. The description of the theory and algorithms is generally informal and intuitive. We redefine the underlying network of the problem, to obtain a compact representation. Then we describe a basic branch-and-bound enumeration procedure. Both concepts are used for complexity issues and for the development of algorithms: establishing NP-hardness, approximability, special cases solvable in polynomial time, and an efficient exact branch-and-bound algorithm.Economics ;

    An overview of Stackelberg pricing in networks

    Get PDF
    The Stackelberg pricing problem has two levels of decision making: tariff setting by an operator, and then selection of the cheapest alternative by customers. In the network version, an operator determines tariffs on a subset of the arcs that he owns. Customers, who wish to connect two vertices with a path of a certain capacity, select the cheapest path. The revenue for the operator is determined by the tariff and the amount of usage of his arcs. The most natural model for the problem is a (bi-linear) bilevel program, where the upper level problem is the pricing problem of the operator, and the lower level problem is a shortest path problem for each of the customers. This manuscript contains a compilation of theoretical and algorithmic results on the Stackelberg pricing problem. The description of the theory and algorithms is generally informal and intuitive. We redefine the underlying network of the problem, to obtain a compact representation. Then, we describe a basic branch-and-bound enumeration procedure. Both concepts are used for complexity issues and the development of algorithms: establishing NP-hardness, approximability, and polynomially solvable cases, and an efficient exact branch-and-bound algorithm.mathematical applications;

    Optimization in Telecommunication Networks

    Get PDF
    Network design and network synthesis have been the classical optimization problems intelecommunication for a long time. In the recent past, there have been many technologicaldevelopments such as digitization of information, optical networks, internet, and wirelessnetworks. These developments have led to a series of new optimization problems. Thismanuscript gives an overview of the developments in solving both classical and moderntelecom optimization problems.We start with a short historical overview of the technological developments. Then,the classical (still actual) network design and synthesis problems are described with anemphasis on the latest developments on modelling and solving them. Classical results suchas Menger’s disjoint paths theorem, and Ford-Fulkerson’s max-flow-min-cut theorem, butalso Gomory-Hu trees and the Okamura-Seymour cut-condition, will be related to themodels described. Finally, we describe recent optimization problems such as routing andwavelength assignment, and grooming in optical networks.operations research and management science;

    On the P-Coverage Problem on the Real Line

    Get PDF
    In this paper we consider the p-coverage problem on the real line. We first give a detailed description of an algorithm to solve the coverage problem without the upper bound p on the number of open facilities. Then we analyze how the structure of the optimal solution changes if the setup costs of the facilities are all decreased by the same amount. This result is used to develop a parametric approach to the p-coverage problem which runs in O (pn log n) time, n being the number of clients.Economics ;

    Sensitivity Analysis of the Economic Lot-Sizing Problem

    Get PDF
    In this paper we study sensitivity analysis of the uncapacitated single level economic lot-sizing problem, which was introduced by Wagner and Whitin about thirty years ago. In particular we are concerned with the computation of the maximal ranges in which the numerical problem parameters may vary individually, such that a solution already obtained remains optimal. Only recently it was discovered that faster algorithms than the Wagner-Whitin algorithm exist to solve the economic lot-sizing problem. Moreover, these algorithms reveal that the problem has more structure than was recognized so far. When performing the sensitivity analysis we exploit these newly obtained insights

    On the Complexity of Postoptimality Analysis of 0/1 Programs

    Get PDF
    In this paper we address the complexity of postoptimality analysis of 0/1 programs with a linear objective function. After an optimal solution has been determined for a given cost vector, one may want to know how much each cost coefficient can vary individually without affecting the optimality of the solution. W11e show that, under mild conditions, the existence of a polynomial method to calculate these maximal ranges implies a polynomial method to solve the 0/1 program itself. As a consequence, postoptimality analysis of many well - known NP - hard problems can not be performed by polynomial methods, unless P = NP. A natural question that arises with respect to these problems is whether it is possible to calculate in polynomial time reasonable approximations of the maximal ranges. We show that it is equally unlikely that there exists a polynomial method that calculates conservative ranges for which the relative deviation from the trite ranges is guaranteed to be at most some constant. Finally, we address the issue of postoptimality analysis of E - optimal solutions of NP-hard 0/1 problems. It is shown that for an - optimal solution that has been determined in polynomial time, it is not possible to calculate in polynomial time the maximal amount by which a cost coefficient can be increased sutch that the solution remains - optimal, unless P =,NP. OR/MS subject classification: Analysis of algorithms, computational complexity: postoptimality analysis of 0/1 programs; Analysis of algorithms, suboptimal algorithm: sensitivity analysis of approximate solutions of 0/1 programs
    corecore